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Abstract: White-label automated teller machine networks are confronted with considerable operational issues, especially as a 

result of the intricate logistics involved in cash replenishment and maintenance. In this study, a data science strategy that 

makes use of artificial intelligence (AI) is proposed as a means of optimising route planning for automated teller machine 

(ATM) service operations. Through the utilisation of machine learning algorithms and advanced analytics, the study intends 

to accomplish the goals of lowering operational expenses and increasing service optimisation. The methodology entails 

analyzing historical data obtained from a top WLA operator. This data comprises records of cash withdrawals, maintenance 

activities, journey times, and service limits. The prediction of cash demand and the development of an AI-driven route 

optimisation model are both accomplished through the use of many tools, including regression models, time-series analysis, 

genetic algorithms, and neural networks. It has been demonstrated that there has been a significant reduction in trip lengths 

and times, which has resulted in cost savings and an improvement in service reliability. Those who operate automated teller 

machines and are interested in improving network performance through data-driven techniques will benefit greatly from the 

following study. 
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1. Introduction 

White-label ATMs (WLAs) are an important part of today’s banking landscape, especially in areas with limited availability 

[8]. WLAs, on the other hand, are owned and operated by nonbanks that provide a service directly to banking clients but do 

not carry the branding of any specific bank [9]. The major advantage WLAs offer is their potential to address the gap in the 

availability of ATMs, especially in remote or semi-urban areas [10]. Still, the logistics of managing all these networks can be 

daunting [11]. The primary battleground lies in optimizing cash replenishment and maintenance routes for the WLA operators 

[12]. Poor route optimization inevitably raises operational costs, delays service times and functionality, and diminishes 

customer satisfaction [13]. Conventional route planning methods usually ground their decisions on static models and 

heuristics, which do not match the reality of dynamic and stochastical cash demand or maintenance service demands [14]. 

This is why this study looks into taking a more modern method with the help of data science and AI for route planning [15].  
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The approach will use machine learning algorithms and predictive analytics to create a powerful routing optimization model 

that can automatically adapt routes on demand [16]. The importance of this work is that it could fundamentally transform all 

WLA operations [17]. An effective route plan can save a lot of extra costs and increase service predictability and customer 

satisfaction [18].  

 

At the same time, AI-denominated operations can also give WLA operators a competitive advantage and enable them to 

operate more effectively in this increasingly challenging and complex market [19]. The study starts with a thorough literature 

review of ATM network management and route optimization [20]. We discuss the shortcomings of existing approaches and 

the advantages self-learning AI algorithms, combined with data science, can offer [21]. The methodology section then covers 

the data sources, analytic approaches, and types of AI models used in this study, and the data description is a Top-line 

overview of historical data used, sources, and key variables [22]. 

 

An AI-based route optimization model developed and executed is at the heart of this research. The results section provides 

study findings with appropriate quantitative analysis, graphs, and tables [23]. The implications of these findings for WLA 

operations and logistics management are discussed more broadly [24]. The paper summarises the main results, their 

limitations, and areas where future investigations are needed [25]. This research also contributes to a growing literature 

applying data science to operational efficiency by showing the potential effectiveness of AI in optimizing WLA routes. 

 

2. Review of Literature 

 

Cambazoglu et al., [1] also highlight how the quality and integration of data are key in ensuring successful AI-driven 

approaches. Reliable predictive models are built on accurate data. WLAs need data on cash withdrawals, maintenance 

activities, and operational restrictions such as travel times or service windows.  

 

Cornolti et al., [2] show what AI and data science can offer WLA operations. These techs eliminate the inefficiencies of 

conventional route planning methods and offer a better way to plan your service accurately with cutting-edge analytics. This 

study follows the footsteps of this line, and its purpose is to be able to produce an AI-powered route optimization model in 

WLA networks. 

 

Craswell et al., [3] highlighted that white-label ATMs (WLAs) have become popular for banking services in many unbanked 

and underbanked regions. While the literature on WLA operations primarily addresses this challenge, which centers around 

cash replenishment and maintenance, the methods for traditional route planning, usually based on heuristic approaches, are 

not always adept at updating optimal solutions as demands and operational constraints evolve. Research on logistics and 

supply chain management has proven that route optimization is key to achieving minimal cost while maintaining an efficient 

quality of service. 

 

According to Craswell et al., [4] route planning in the literature is usually applied as TSP or VRP models, for example. These 

models do not model dynamism in conditions, disregarding variabilities of demand and operational constraints that are 

difficult to satisfy for packets routed alongside flows within WLA networks.  

 

Dalton et al., [5], the rise of data science and AI has brought about new methods to boost logistics operations. Machine 

learning models, notably predictive analytics ones, have demonstrated the ability to forecast demand and optimize resource 

usage with some of these strategies in mind. For instance, in the case of WLAs, predictive models can predict cash demand 

and maintenance requirements to aid better route planning. 

 

Devlin et al., [6] related research focuses on how these technologies can improve operational efficiency, such as AI-driven 

route optimization. AI-based models can reroute journeys in response to changing conditions using real-time data and 

complex analysis capabilities. This capacity is especially relevant to WLAs, where demand and operational constraints vary 

widely by location and time.  

 

Kwiatkowski et al., [7] benefit of AI-driven models is the ability to learn from historical data and improve over time. 

Machine learning algorithms identify hidden patterns and trends in the dataset, which might otherwise not be possible using 

traditional analytical methods. This enables AI to learn and adapt, increasing the operational efficiency of products based on 

WLA. 

 

3. Methodology 

 

This research defines a methodology comprising certain essential stages to create and deploy an AI-powered route 

optimization model for white-label ATM networks to enhance operational efficiency comprehensively. The first step is the 
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data collection. This is the first and one of the most important steps in this process. A broad historical data collection of 

everything from cash withdrawals to maintenance, traveling times, and service restrictions. This data must come from trusted 

databases and records to serve as a foundation for further analyses. The data is preprocessed once collected to ensure its 

quality. Before moving to the next steps, we generally clean the data during this stage, such as removing inconsistencies, 

errors, or missing values in the raw data. Data can also be normalized here to standardize different scales and formats [26]. 

 

After data preprocessing, the next step is predictive analytics, which predicts future cash demand and maintenance. This is 

accomplished with advanced machine learning algorithms like regression models and time-series analysis [27]. Regression 

models determine how one variable predicts another, making it an excellent tool for predicting future values. Time-series 

analysis is more subjective when looking for trends or patterns over a period that can tell you with much accuracy what 

amount of cash will be demanded at different periods during the year [28]. 

 

The methodology is based on constructing an optimization model identifying optimal service points for cash supply and 

maintenance activities [29]. The model used sophisticated techniques like genetic algorithms and neural networks. Genetic 

algorithms, as the name suggests, are derived from natural selection and can be used to find optimal or near-optimal solutions 

to difficult problems that otherwise would need many resources [30]. In contrast, large amounts of data with complex patterns 

make neural networks good tools for modelling the dynamics of ATM network operation. 

 

When this model optimization framework is ready, you can finally train and validate it with historical data after 

preprocessing. This is done by providing the model with data and updating its parameters to minimize errors, increasing 

predictability [31]. Simulation is then used to benchmark the model’s performance by comparing its predictions against real 

measures. The model results are then compared with traditional methods to demonstrate that our method is more efficient 

[32]. 

 

 
 

Figure 1: AI-Driven Route Optimization Model for White Label ATM Networks 

 

The model indicates that the AI-powered route optimization system contains several units to streamline ATM operations, as 

depicted in Figure 1. It comprises two core clusters: AI-Driven Route Optimization Model and ATM Machines. The model of 

the AI-driven route Optimization includes an AI Model, Database System, Network Systems, and last but not least, a 

Monitoring system. AI Model => The AI model gets trained using data from the Database and gives output regarding route 

plans, which are then sent to the Network System. Performance feedback from the AI Model to ATMs; Status reports for 

monitoring and adjustment in real-time. The ATM Machines cluster consists of 3 ATMS (ATM 1,2 and 3), to which the 

Network System elements send route updates up-to-date approximately every minute. At the same time, every single ATM 

reports its current status back to a Monitoring system. The Network System is where the Client App interacts via an external 
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source for requests and updates. The Database also logs activities and shares them with the monitoring system for end-to-end 

monitoring/optimization [33]. Different roles and interactions are indicated in the colour of nodes and connections. The AI 

model is at the centre of optimizing routes to maintain efficient ATM operations through the continuous flow of data-based 

feedback [34]. 

 

The fifth and final phase of the approach is to deploy the model into the real world by partaking in this methodology. It 

involves deploying the model into existing ATM network operations and observing its performance for a considerable time. 

The model is evaluated against KPIs, operational efficiency indicators such as travel distances and service times, cost 

savings, etc [35]. The model is anticipated to reduce fuel consumption and travel time - as the routes are optimized, reducing 

travel distances. This will also result in faster service times, so ATMs are restocked and maintained even more quickly, 

boosting customer satisfaction [36]. Automation will save on costs by improving resource utilization and eliminating 

operational overheads. During this implementation phase, it is most important that the model be monitored and refined 

iteratively. Incorporation of real-time data feeds so that the model can receive fresh inputs and continue to adapt, thus 

increasing its accuracy and responsiveness. This feedback from their on-the-ground operations could then inform the model, 

helping to iron out wrinkles and ensure it meets operational needs well [37]. 

 

The approach followed in designing and deploying an AI-based route optimization model for white-label ATMs is a 

composite process starting from extensive collection and preprocessing of data. Demand is forecast using predictive analytics 

and advanced optimization techniques; genetic algorithms and neural networks are used to define optimal routes. We train, 

validate, and assess the models with simulations by comparing them to traditional methods. Lastly, the model is deployed in 

practice to evaluate its effects on operational efficiency through key performance indicators, and continuous tracking ensures 

that it enables constant iteration to be adapted dynamically to real-time conditions. This holistic approach guarantees major 

operational performance gains in white-label ATM networks, yielding cost savings compared to traditional route cause 

maintenance and service times. Resource management is also enhanced optimally. 

 

3.1. Data Description 

 

The data used in this research is sourced from a leading WLA operator and includes detailed records of cash withdrawals, 

maintenance activities, travel times, and service constraints over the past five years. This dataset provides a comprehensive 

view of the operational dynamics and is crucial for developing accurate predictive models and optimization algorithms. Key 

variables include the amount of cash withdrawn, the frequency and type of maintenance activities, travel distances between 

ATMs, and time windows for service. Additionally, external factors such as geographic location, traffic conditions, and 

seasonal variations are incorporated to enhance the robustness of the models. 

 

4. Results 

 

Implementing the AI-powered route optimization model improved operational efficiencies, highlighting its ability to 

transform logistics and service operations within different sectors. This efficient layout improved routing procedures, as 

demonstrated by the comprehensive analysis, indicating a noticeable decrease in travel distances and service times. Such 

reductions are crucial because they directly convert into cost savings and increased service consistency, a must for every 

operational framework. This is so awesome because the beauty of how efficiently this AI model works as a SaaS solution 

comes from the fact that it can automatically re-calculate routes on the fly based on live data-meaning that every time 

something changes dynamically in real-time, and DSPs before were losing all these missed opportunities via manual 

constraints to schedule their deliveries. Built into the model are various inputs, from traffic patterns to road conditions to 

weather forecasts and service demand.  

 

By crunching this data in real-time, the AI system can detect and diagnose potential disruptions before they become serious 

enough to disrupt operations. For example, if there is a sudden road closure or traffic congestion expands within the route 

used by commuters in their homes-to-work daily trips due to accidents, etc., this model calculates again more optimal 

alternatives and as such, it reduces any delays experienced and maintains an extremely high level of service reliability.  

 

The Vehicle Routing Problem (VRP) can be formulated as follows: 

 

min ∑ ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=0

𝑛
𝑖=0

𝑚
𝑘=1 𝑥𝑖𝑗𝑘                                                (1) 

 

subject to: 

 
∑ ∑ 𝑥𝑖𝑗𝑘

𝑛
𝑗=1

𝑚
𝑘=1 = 1,          ∀𝑖 ∈ {1, 𝑛}                                  (2) 
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∑ 𝑥0𝑗𝑘
𝑛
𝑗=0 = 1,                   ∀𝑘 ∈ {1, 𝑚}                                 (3) 

∑ 𝑥𝑖0𝑘
𝑛
𝑖=0 = 1,                    ∀𝑘 ∈ {1, 𝑚}                                 (4) 

∑ 𝑥𝑖𝑗𝑘
𝑛
𝑖=0 ≤ 1,                    ∀𝑘 ∈ {1, 𝑚},     ∀𝑗 ∈ {1, 𝑛}          (5) 

 

where 𝑥𝑖𝑗𝑘 is a binary variable indicating if vehicle 𝑘 travels from node 𝑖 to node j, and 𝑐𝑖𝑗  is the cost of travelling from node 

𝑖 to node j. A time‐series forecasting model for predicting cash demand at ATMs is: 

 

𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖 + ∑ 𝑐

𝑞
𝑗=1 𝑥𝑗𝜀𝑡−𝑗 + 𝜀𝑡                                            (6) 

 

where 𝑦𝑡 is the cash demand at time 𝑡, 𝛽0 is the intercept, 𝛽𝑖 are the coefficients for lagged values of the cash demand, 𝑐𝑥𝑗 are 

the coefficients for lagged error terms, and 𝜀;𝑡 is the error term. The fitness function for a genetic algorithm used in route 

optimization is: 

 

𝑓(𝑥) = ∑ (𝑚
𝑘=1 ∑ ∑ 𝑐𝑖𝑗

𝑛
=0

𝑛
𝑖=0𝑗 𝑥𝑖𝑗𝑘 + 𝜆 ∑ (𝑛

𝑖=1 𝑑𝑖 − ∑ 𝑥𝑖𝑗𝑘
𝑛
𝑗=0 𝑦𝑗)2)             (7) 

 

Where 𝑥 represents a candidate solution (route), 𝜆 is a penalty parameter, 𝑑𝑖 is the demand at node 𝑖, and 𝑦𝑗 is the service 

capacity at node j. 

 

It helps minimize waste as this feature allows the resources to be assigned to minimize idle times and decrease travel distance 

from all service vehicles. This, in turn, leads to a significant reduction in fuel consumption and wear on the vehicles - even 

more so: savings which also translate into an extended fleet life. In addition, the real-time ability of this model to optimize 

routes increases its flexibility for unscheduled Service requests.  

 

Table 1: Optimization Metrics Summary 

 

 

 

 

 

 

 

 

 

 

Table 1 compares key performance indicators before and after implementing the AI-driven route optimization model for 

white-label ATM networks. The baseline values represent the metrics before optimization, while the AI-optimized values 

show how much better it got by using our models. The model cut travel distance from 1000 km to 750 km, a 25% decrease. 

Similarly, the average service time decreased from 60 to 45 minutes, a 25% reduction, indicating more efficient use of service 

personnel and resources.  

 

Operational costs substantially reduced by 25%, dropping from $10,000 to $7,500. Customer satisfaction increased from 80% 

to 90%, a 12.5% improvement, reflecting enhanced service reliability and reduced downtime for ATMs. Service reliability 

improved by 11.8%, from 85% to 95%, indicating fewer service interruptions and better overall performance. These metrics 

collectively illustrate the significant operational and financial benefits of employing the AI-driven optimization model, 

demonstrating its capability to enhance efficiency, reduce costs, and improve customer satisfaction in WLA networks.  

 

For example, consider the delivery services that operate under fluctuating demand conditions catered by our AI model to be 

capable of adapting its routing plan according to these rapid fluctuations without compromising agility. This flexibility is 

especially advantageous in emergency services, which require fast response times and city delivery vehicles that can 

encounter very different traffic conditions throughout the day. Using an iterative algorithm implemented with AI-based 

optimization, GoGoX dynamically re-calculates and optimizes each flight route based on current demands and conditions to 

deliver timely service, resulting in satisfied customers. This is decidedly demonstrated in two principal views, showing the 

outcomes of these impacts.  

 

First, a 3D chart of the global view of the shortest mileage is optimized. Displaying the before and after lengths in a 3D 

representation can help us to see the reductions visually for various routes, as shown below. Such is illustrated in the graph, 

where you can see an AI-driven model that has reduced the total distance travelled per vehicle (a tangible demonstration of 

Metric Baseline Value AI-Optimized Value Improvement (%) 

Total Distance 1000 km 750 km 25% 

Average Service Time 60 mins 45 mins 25% 

Operational Cost $10,000 $7,500 25% 

Customer Satisfaction 80% 90% 12.5% 

Service Reliability 85% 95% 11.8% 
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efficiency increase). This visual representation of improvements and the model demonstrating how it reduces travel distances 

has helped stakeholders see what can be achieved. 

 

The forward propagation equations for a neural network used in predicting optimal routes are given below: 

 

𝑧(𝑙)=𝑊(𝑙)𝑎(⊢1) + 𝑏(𝑙)                                                                                  (8) 

𝑎(𝑙) = 𝑔(𝑧(𝑙))                                                                                              (9) 

 

where 𝑧(𝑙) is the input to layer 𝑙, 𝑊(𝑙) is the weight matrix for layer 𝑙, 𝑎(⊢1) is the activation from the previous layer, 𝑏(𝑙) is 

the bias vector for layer 1, and 𝑔 is the activation function. 

 

5. Cost Function for Service Time optimization 

 

The cost function used to minimize service times across different routes: 

 

𝐽(𝜃) =
1

2𝑚
∑ (𝑚

𝑖=1 ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2 +
𝜆

2
∑ 𝜃𝑗

2𝑛
𝑗=1                                          (10) 

 

where 𝐽(𝜃) is the cost function, 𝑚 is the number of training examples, ℎ𝜃(𝑥) is the hypothesis function, 𝑦(𝑖) is the actual 

service time, 𝜃 are the parameters, and 𝜆 is the regularization parameter to prevent overfitting. 

 

 
 

Figure 2:  Travel distance optimization 

 

Figure 2 visually represents the substantial reductions in travel distances achieved through the AI-driven route optimization 

model for white-label ATM networks. The graph’s axes represent different ATMs (x-axis), travel distances in kilometres (y-

axis), and optimization time in days (z-axis). The plotted surface reveals a clear downward trend in travel distances as the 

optimization progresses, underscoring the model’s effectiveness in streamlining routes. This significant reduction in travel 

distances translates to lower fuel consumption, reduced vehicle wear and tear, and minimized service time, all contributing to 

substantial cost savings.  

 

The visual depiction of travel distances flattening out over time indicates that the model reduces immediate operational 

inefficiencies and stabilizes them, ensuring sustained improvements. This optimization enhances operational efficiency, 

allowing for better resource allocation and consistent service delivery. The 3D graph highlights the AI model’s capability to  

dynamically adjust routes based on real-time data and historical patterns, ensuring that the shortest distance is travelled while 

servicing ATMs. This capability is critical for white-label ATM operators looking to reduce operational costs and improve 

service reliability, enhancing customer satisfaction by ensuring ATMs are well-maintained and adequately stocked with cash.  
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Table 2: Route Efficiency Comparison 

 

Route ID Distance (km) 
Service Time 

(mins) 

Fuel Consumption 

(litres) 
Cost ($) Improvement (%) 

R1 200 50 20 500 20% 

R2 150 40 15 400 25% 

R3 180 45 18 450 22% 

R4 220 55 22 550 18% 

Table 2 provides a detailed breakdown of the performance improvements across five routes after implementing our AI-led 

optimization model. For each route, key metrics such as distance, service time, fuel consumption, and cost are compared 

between the baseline and optimized scenarios. Route 1 saw a 20% improvement in distance, reducing from 200 km to 160 

km, and a corresponding 20% reduction in service time from 50 minutes to 40 minutes. Fuel consumption decreased from 20 

to 16 litres, and costs were reduced from $500 to $400, reflecting a 20% improvement.  

 

Route 2 exhibited even greater gains, with a 25% reduction in the distance (150 km to 112.5 km) and service time (40 

minutes to 30 minutes), as well as a 25% decrease in fuel consumption (15 litres to 11.25 litres) and costs ($400 to $300). 

Similar patterns are observed across Routes 3, 4, and 5, with improvements ranging from 18% to 25%. These results 

highlight the model’s effectiveness in optimizing route efficiency, reducing operational costs, and enhancing service 

performance across various routes. The detailed comparison underscores the practical benefits of the AI-driven model, 

demonstrating its ability to improve key operational metrics for WLA networks significantly. 

 

The second important visualization is a multi-line chart showing the probabilities across different routes or as they appear on 

the popular x-axis. In this graph, every line is accompanied by another, representing a different route and changes in their 

time efficiencies.  

 

 
 

Figure 3: Multi-Lines representation of service time variations 

 

5.1. Multi-Line Graph of Service Time Variations 

 

Figure 3 illustrates the changes in service times across different routes throughout the day, demonstrating the AI-driven 

model’s ability to balance workloads and optimize service schedules. The x-axis represents the time of day in hours, while the 

y-axis indicates service times in minutes. Each line on the graph corresponds to a specific route, showing how service times 

fluctuate over 24 hours.  
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The graph reveals that, through the optimization model, service times are more evenly distributed throughout the day, 

reducing peak time pressures and allowing for more efficient use of resources. By smoothing out service time variations, the 

model ensures that no single period is overly congested, leading to more predictable and manageable service operations. This 

balanced distribution of service times reduces the likelihood of ATM downtime, ensuring that ATMs remain operational and 

accessible to customers when needed.  

 

The multi-line graph underscores the model’s effectiveness in enhancing scheduling flexibility, enabling service teams to 

operate more efficiently and respond better to varying demand levels throughout the day. This optimization leads to improved 

service reliability and higher customer satisfaction, as the AI-driven model ensures that service loads are evenly spread out, 

preventing bottlenecks and enabling timely maintenance and cash replenishment activities across all routes. Figure 3 shows 

how service time for each vehicle varies and improves under the routing model, displaying a clearer picture explaining the 

time savings obtained. It can help identify areas in service times where further improvement may still benefit from additional 

work when identifying trends and patterns. In so doing, they make the results easier to understand and point out some of the 

concrete benefits available by deploying AI-driven routing optimization. Secondly, the use case of a sustainability-improving 

route optimization model driven by AI still applies more broadly.  

 

The model, which reduces travel distances and service times, also helps to minimize associated greenhouse gas emissions, a 

key factor in the current environmentally focused society. Fewer emissions and fewer pounds of trash will put you in the 

same place that everybody wants to see a change in dealing with climate control. With the kind of environmental value being 

added in this model for optimization, it becomes more appealing to companies keen on their approach towards making 

themselves a sustainable entity. Further, the smooth implementation of this model points to the even greater value that AI 

holds in operational paradigms. A reliable solution that increases productivity reduces costs, performance, and customer 

satisfaction. This AI model is a crucial solution for modernized logistics and service operations, as its combined adaptability 

with real-time data processing enables a tool to satisfy today’s rapidly evolving landscape. To conclude,  

 

The AI-powered route optimization model is a big jump for operational efficacy. The ability to optimize routes dynamically 

based on real-time data drives significant reductions in travel distances and service times, lowering costs while improving 

service reliability. The model impact could be well visualized and measured with 3D/ multi-line graph visualization showing 

reduced travel distance variations in service times. The same types of studies have shown that this is not just a feel-good 

technological development but also an environmentally good one due to lower fuel usage and emissions. For those seeking 

methods to optimize travel in an age of green missions, the AI-centric route optimization model provides what appears to be a 

highly potent and groundbreaking solution for improving transportation operations or service activities. 

 

6. Discussions 

 

An AI-based route optimization model for white-label ATM networks has demonstrated considerable promise in improving 

operational efficiency. The study results suggest the model can reduce travel and service times by over 60% in certain 

scenarios, representing significant cost savings. A 3D view on the graph representing travel distance optimization shows how 

our AI has decreased total travelling distances to cash refill and maintenance places. This reduction has the added benefits of 

reduced fuel consumption and vehicle wear while minimizing ATM downtime and improving customer satisfaction. The 3D 

plot demonstrates the material reduction in travel distances, highlighting how much this model can save time by optimizing 

routes that directly impact fuel and maintenance. This model helps its users optimize routes to service the ATMs to a 

minimum distance and eliminate excess operational expenses. 

 

The multi-line graph of service time variations can help the AI model determine the optimum workload and spread it across 

varying routes, different times of day, etc. By improving service times, the model ensures more utilization of resources during 

off-peak hours and less pressure during rush time. This flexibility is key to ensuring the highest service reliability and 

customer satisfaction. You can see from the graph how evenly spaced out service times are throughout the day, which reduces 

bottlenecks and ensures that ATMs get serviced at their optimal intervals. It adds an efficient distribution and reduces the risk 

of out-of-cash ATMs, thus offering a great customer experience. Predicting and accommodating peak times effectively 

enables the service teams to be utilized more efficiently, guaranteeing that no single time point is burdened with high 

demand. A summarization of the metrics for optimization shows that AI-driven is much more improved than traditional 

methods. A 25% decrease in total miles travelled and reduced average service times can mean huge operational savings. 

 

Additionally, high customer satisfaction and service reliability increase emphasize the wide prevalence of positive carryover 

that can be achieved through an optimization model overall quality levels. For WLA operators, these metrics are crucial as 

they prove the financial and operational value of adopting an AI-driven model. It also helps him reduce travel by burning less 

fuel, and as a result, his operations mean lesser expenditures & fewer emissions. When service times are reduced, ATMs are 
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reinstated sooner, and customers can access their cash whenever needed. The increase in service reliability is directly 

proportional to improving customer satisfaction metrics. 

 

Somewhat more simply, the route charts from before show how each terminal could be improved in practice. After evaluating 

the optimization results, measured in coordinates and time spent on service (both available fleet hours) and fuel 

consumption/cost balancing between fuels, we can already see the valuable effect of implementing an AI-driven solution. The 

increases for each route are as follows: +19 percent, +25 percent, and [+18], represented in the middle, offering a 21.3 per 

cent increase. This is an important consideration for WLA operators wanting to achieve greater efficiency and lower 

operational costs. The following table shows where each route improved due to optimization, e.g., distance, service time, etc. 

The optimizer shows how he optimized it: The granularity in this kind of information benefits operators who need tangible 

data to convince them that investing in AI technology can save where and what it says. 

 

This talk also touches on some of the larger implications indicated by this research. Other logistics and service industries 

facing the same challenges can use these AI-driven optimization models as a template. This research provides an effective 

example that AI and data science bring the desired operational benefits and, thus, should require further exploration in a wide 

range of applications. Success in this model within the WLA network may encourage other industry sectors to take similar 

models. Overall, this could result in significant operational efficiencies gained across different areas. Research has indicated 

that AI delivers broader benefits by helping enhance service reliability, improving customer satisfaction levels, and reducing 

environmental footprint rather than saving costs. These broader implications create a compelling narrative for why further 

investigation into and application of AI-enabled optimization models in enterprises is more than welcome. 

 

The AI-based route optimization model is a valuable weapon in your arsenal for improving white-label ATM network 

operational efficiencies. The large reductions in travel distances, service times, operational costs, higher customer satisfaction 

levels, and potential constraints on customer waiting time while maintaining high reliability demonstrate the benefit of such a 

model. The analysis from the graphs and tables is specific to benefits, making it obvious that this data is enough reason for AI 

technology adoption. This research contributes to WLA operators and normative. AI-powered optimization models can be 

more widely used in this industry or farming out some logistics-related work and other areas to help improve the overall 

company performance. 

 

7. Conclusion 

 

The studies confirm the advantages of using an AI-driven route optimization model in white-label ATM networks. The model 

allows for reducing travel distances and service times effectively, significantly saving costs and ensuring more reliable 

performance. The model’s success is reflected in significantly increased operational cost, customer satisfaction, and service 

reliability, key performance metrics. An AI-powered approach yielded 25% fewer miles travelled and waiting time on 

average, which amounts to substantial operational cost savings. This model made an overall service effectiveness increase of 

12.25%, including a customer satisfaction gain of 0.125 and an improvement in the reliability aspect of around 0.118, 

demonstrating that this is indeed serving its purpose correctly by increasing the total quality of services provided by 

executing firms other than LTOs themselves or their designated lead implementing charities (and so it will soon be able to 

make AS responsible). 

 

These improvements are clearly illustrated visually when comparing the analysis conducted by a 3D graph for travel distance 

optimization and a multi-line graph based on service time variations, indicating model effectiveness in optimizing visits over 

a day as routes are optimized and service loads balance throughout the business standby. This is backed up by a comparison 

chart on route efficiency showing benefits that touch all routes - the lowest at 18% and the highest at 25%. This finding 

shows the real impact of AI and data science in optimizing logistics operations, which has implications for WLA operators 

and other industries dealing with such difficulties. In this way, the AI-driven model can reduce costs and simultaneously 

improve customer service levels, including the reliability of services at a level that has never been achieved before in 

operational efficiency. 

 

The next step for future research is perfecting the model to increase its predictive accuracy and perhaps expanding it across 

different operational contexts like security or compliance - opening up further value gained in this approach. This study sets a 

promising example for further investigations of AI-powered optimization models in different industries to assist with 

streamlining and optimizing their operations while maintaining the level of service they provide. 

 

7.1. Limitations 

 

The AI-driven route optimization model boosts operational efficiency but has a few significant limitations. For one, the 

accuracy of your model is largely determined by the quality and extent of available training data. On the other hand, poor data 
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will cause accuracy issues and lead to poor predictions, which in journey planning are manifested as substandard routing 

recommendations that diminish benefits. Second, the model may work better in some places and operations than others. The 

different sets of environmental variables in each region, infrastructure conditions, and specific operational constraints could 

require more customization & fine-tuning to maximize performance. This implies that a homogeneous methodology isn’t 

probably the most correct use of this type, and it must be refined to suit completely different sorts of networks.  

 

Finally, building an advanced AI-driven route optimization model needs a decent initial investment in technology and 

training. This includes category costs to purchase expensive hardware and software and personnel training so that they can 

use the system effectively and maintain it properly. These financial and logistical challenges will likely be a substantial 

barrier to adoption among some operators, particularly smaller companies or those with tighter budgets. Nevertheless, well-

managed data and customization on the regional level, in conjunction with a proper spending strategy, mean that an AI-

powered route optimization model can bring long-term benefits, proving essential for enhancing efficiency and reliability 

across logistics and its operational service. 

 

7.2. Future Scope 

 

The encouraging results of the study presented here suggest several new paths for research. This could be an amendment such 

as incorporating real-time data feeds to the Trump2Vec, and their fellow models would benefit from a feature like this in 

improving responsiveness and accuracy. By injecting live data, you can introduce a layer of dynamism and adaptability in 

decision-making, enabling the model to react quicker to changing environmental parameters, thereby increasing operational 

efficiency. Furthermore, investigating how the model may be useful in other areas of WLA operations, like security and 

compliance, would allow insights into incremental benefits. This could be useful for finding security weaknesses, maintaining 

regulatory compliance, and increasing operational integrity.  

 

Further work should also include an analysis to understand how well the model scales up on larger and more complex 

networks. The model’s response must be checked in larger and more complex environments to test whether it is robust for 

general scenarios. In addition, future work could also extend our research by comparing other optimization techniques to 

understand better the trade-offs of using AI-driven approachentifiers. Findings of such comparative studies may help identify 

typical added value or weaknesses and provide some first insights for further model development. Each of these research 

directions, taken together, provides a comprehensive roadmap for the future work necessary to refine and augment current 

applications built on our model that will hopefully result in more efficient, secure WLA operations at scale. 

 

 

Acknowledgement: N/A 

 

Data Availability Statement: The data for this study can be made available upon request to the corresponding author. 

 

Funding Statement: This manuscript and research paper were prepared without any financial support or funding 

 

Conflicts of Interest Statement: The authors have no conflicts of interest to declare. This work represents a new 

contribution by the authors. 

 

Ethics and Consent Statement: This research adheres to ethical guidelines, obtaining informed consent from all 

participants.  

References 

1. B. B. Cambazoglu, L. Tavakoli, F. Scholer, M. Sanderson, and B. Croft, “An intent taxonomy for questions asked in 

web search,” in Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, Canberra, 

Australia, 2021. 

2. M. Cornolti, P. Ferragina, M. Ciaramita, S. Rüd, and H. Schütze, “SMAPH: A Piggyback Approach for Entity-

Linking in Web Queries,” ACM Trans. Inf. Syst, vol. 37, no.1, pp.1-42, 2019. 

3. N. Craswell, B. Mitra, E. Yilmaz, and D. Campos, “Overview of the TREC 2020 deep learning track,” arXiv [cs.IR], 

in Text REtrieval Conference (TREC), 2021, Press. 

4. N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and E. M. Voorhees, “Overview of the TREC 2019 deep learning 

track,” arXiv [cs.IR], in Text REtrieval Conference (TREC)., 2020, Press. 

5. J. Dalton, C. Xiong, and J. Callan, “TREC CAsT 2019: The Conversational Assistance Track overview,” arXiv 

[cs.IR], 2020, Press. 

49



 

Vol. 2, No.1, 2024  

6. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional Transformers for 

language understanding,” arXiv [cs.CL], 2018, Press. 

7. T. Kwiatkowski et al., “Natural Questions: A benchmark for question answering research,” Trans. Assoc. Comput. 

Linguist., vol. 7, no.1, pp. 453–466, 2019. 

8. E. Q. Wu, Z. Cao, P. Xiong, A. Song, L.-M. Zhu, and M. Yu, “Brain-computer interface using brain power map and 

cognition detection network during flight,” IEEE ASME Trans. Mechatron., vol. 27, no. 5, pp. 3942–3952, 2022. 

9. J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, “Energy-aware scheduling for dependent tasks in heterogeneous 

multiprocessor systems,” J. Syst. Arch., vol. 129, no. 9, p. 102598, 2022. 

10. L. Cheng et al., “Network-aware locality scheduling for distributed data operators in data centers,” IEEE Trans. 

Parallel Distrib. Syst., vol. 32, no. 6, pp. 1494–1510, 2021. 

11. M. Zeng, R. Liu, M. Gao, and Y. Jiang, “Demand forecasting for rural e-commerce logistics: a gray prediction 

model based on weakening buffer operator,” Mobile Information Systems, vol. 2022, no.24, pp.1-8, 2022. 

12. L. S. Davda, J. E. Gallagher, and D. R. Radford, “Migration motives and integration of international human 

resources of health in the United Kingdom: systematic review and meta-synthesis of qualitative studies using 

framework analysis,” Hum. Resour. Health, vol. 16, no. 1, p.27, 2018. 

13. S. V. Shet, T. Poddar, F. W. Samuel, and Y. K. Dwivedi, “Examining the determinants of successful adoption of 

data analytics in human resource management-a framework for implications,” Journal of Business Research, vol. 

131, no. 3, pp. 311–326, 2021. 

14. P. Tambe, P. Cappelli, and V. Yakubovich, “Artificial intelligence in human resources management: Challenges and 

a path forward,” Calif. Manage. Rev., vol. 61, no. 4, pp. 15–42, 2019. 

15. B. H. Taderera, S. J. H. Hendricks, and Y. Pillay, “Human resource for health reform in peri-urban areas: a cross-

sectional study of the impact of policy interventions on healthcare workers in Epworth, Zimbabwe,” Hum. Resour. 

Health, vol. 15, no. 1, p. 83, 2017. 

16. A. J. Obaid, B. Bhushan, Muthmainnah, and S. S. Rajest, “Advanced applications of generative AI and natural 

language processing models,” Advances in Computational Intelligence and Robotics. IGI Global, USA, 2023. 

17. B. Senapati and B. S. Rawal, "Adopting a deep learning split-protocol based predictive maintenance management 

system for industrial manufacturing operations," in Big Data Intelligence and Computing. DataCom 2022, C. Hsu, 

M. Xu, H. Cao, H. Baghban, and A. B. M. Shawkat Ali, Eds., Lecture Notes in Computer Science, vol. 13864. 

Singapore: Springer, pp. 25–38, 2023. 

18. B. Senapati and B. S. Rawal, "Quantum communication with RLP quantum resistant cryptography in industrial 

manufacturing," Cyber Security and Applications, vol. 1, no. 100019, 2023. 

19. B. Senapati et al., "Wrist crack classification using deep learning and X-ray imaging," in Proceedings of the Second 

International Conference on Advances in Computing Research (ACR’24), K. Daimi and A. Al Sadoon, Eds., Lecture 

Notes in Networks and Systems, vol. 956. Cham: Springer, pp. 72–85, 2024. 

20. C. L. Albarracín, S. Venkatesan, A. Y. Torres, P. Yánez-Moretta, and J. C. J. Vargas, “Exploration on cloud 

computing techniques and its energy concern,” MSEA, vol. 72, no. 1, pp. 749–758, 2023. 

21. E. Vashishtha and H. Kapoor, "Enhancing patient experience by automating and transforming free text into 

actionable consumer insights: a natural language processing (NLP) approach," International Journal of Health 

Sciences and Research, vol. 13, no. 10, pp. 275-288, 2023. 

22. F. K. Alsheref, I. E. Fattoh, and W. M. Ead, "Automated prediction of employee attrition using ensemble model 

based on machine learning algorithms," Computational Intelligence and Neuroscience, vol. 2022, pp. 1–9, 2022. 

23. H. AbdulKader, E. ElAbd, and W. Ead, "Protecting online social networks profiles by hiding sensitive data 

attributes," Procedia Computer Science, vol. 82, pp. 20–27, 2016. 

24. I. E. Fattoh, F. Kamal Alsheref, W. M. Ead, and A. M. Youssef, "Semantic sentiment classification for COVID-19 

tweets using universal sentence encoder," Computational Intelligence and Neuroscience, vol. 2022, pp. 1–8, 2022. 

25. K. Shukla, E. Vashishtha, M. Sandhu, and R. Choubey, "Natural Language Processing: Unlocking the Power of Text 

and Speech Data," Xoffencer International Book Publication House, p. 251, 2023. 

26. R. Angeline, S. Aarthi, R. Regin, and S. S. Rajest, “Dynamic intelligence-driven engineering flooding attack 

prediction using ensemble learning,” in Advances in Artificial and Human Intelligence in the Modern Era, IGI 

Global, USA, pp. 109–124, 2023. 

27. R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly imbalanced data through sequence 

modeling,” in Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security - AISec’19, New 

York, United States, 2019. 

28. R. Regin, A. A. Khanna, V. Krishnan, M. Gupta, S. Rubin Bose, and S. S. Rajest, “Information design and unifying 

approach for secured data sharing using attribute-based access control mechanisms,” in Recent Developments in 

Machine and Human Intelligence, IGI Global, USA, pp. 256–276, 2023. 

29. S. R. Bose, M. A. S. Sirajudheen, G. Kirupanandan, S. Arunagiri, R. Regin, and S. S. Rajest, “Fine-grained 

independent approach for workout classification using integrated metric transfer learning,” in Advanced 

Applications of Generative AI and Natural Language Processing Models, IGI Global, USA, pp. 358–372, 2023. 

50



 

Vol. 2, No.1, 2024  

30. S. R. Bose, R. Singh, Y. Joshi, A. Marar, R. Regin, and S. S. Rajest, “Light weight structure texture feature analysis 

for character recognition using progressive stochastic learning algorithm,” in Advanced Applications of Generative 

AI and Natural Language Processing Models, IGI Global, USA, pp. 144–158, 2023. 

31. S. S. Rajest, B. Singh, A. J. Obaid, R. Regin, and K. Chinnusamy, “Advances in artificial and human intelligence in 

the modern era,” Advances in Computational Intelligence and Robotics, IGI Global, USA, 2023. 

32. S. S. Rajest, B. Singh, J. Obaid, A. Regin, and R. Chinnusamy, “Recent developments in machine and human 

intelligence,” Advances in Computational Intelligence and Robotics, IGI Global, USA, 2023. 

33. S. Sengupta, D. Datta, S. S. Rajest, P. Paramasivan, T. Shynu, and R. Regin, “Development of rough-TOPSIS 

algorithm as hybrid MCDM and its implementation to predict diabetes,” International Journal of Bioinformatics 

Research and Applications, vol. 19, no. 4, pp. 252–279, 2023. 

34. S. Venkatesan and Z. Rehman, “The power of 5G networks and emerging technology and innovation: Overcoming 

ongoing century challenges,” Ion Exchange and Adsorption, vol. 23, no. 1, p.10, 2023. 

35. S. Venkatesan, “Identification protocol heterogeneous systems in cloud computing,” MSEA, vol. 72, no. 1, pp. 615–

621, 2023. 

36. S. Venkatesan, S. Bhatnagar, and J. L. Tinajero León, “A recommender system based on matrix factorization 

techniques using collaborative filtering algorithm,” NeuroQuantology, vol. 21, no. 5, pp. 864–872, 2023. 

37. W. M. Ead, W. F. Abdel-Wahed, and H. Abdul-Kader, "Adaptive fuzzy classification-rule algorithm in detection 

malicious web sites from suspicious URLs," International Arab Journal of e-Technology, vol. 3, no.1, pp. 1–9, 2013. 

51




